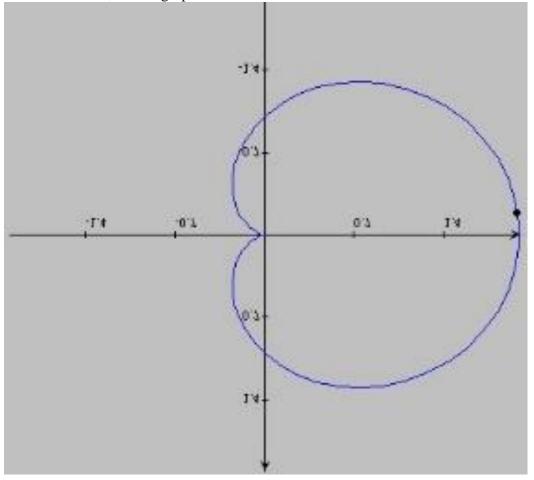
LAB 09 QUESTIONS

QUESTION 1


Open the	e polar grapher application. What is the polar graph of sin(t)?	
0	A circle of radius 1 centered at the origin.	
0	A circle of radius 1/2 centered at (0,1/2).	
0	A circle of radius 1/2 centered at (0,-1/2).	
0	A circle of radius 1/2 centered at (1/2,0).	
0	A circle of radius 1/2 centered at (-1/2,0).	
	1. 0.1.01.0 0.1 1.1.0.1.0 0.1 (1/2,0/)	
		1 points
QUE	STION 2	
Set the circle t	grapher to start when $t = 0$. What ending value of t is the smallest you need to have graced?	the entire
0	Pi/4	
0	Pi/2	
0	Pi	
0	2*Pi	
0	4*Pi	
		1 points
QUE	STION 3	
Graph "rose."	$\sin(n^*t)$ for various integer values of n . Make a conjecture about the number of "pet	als" on the
0	n petals	
0	n petals if n is even, 2*n petals if n is odd	
0	n petals if n is odd, 2*n petals if n is even	
0	2*n petals	
		1 points
QUE	STION 4	
Graph the "ro	cos(n*t) for various integer values of n . Make a conjecture about the number of "pet se."	tals" on
0	n petals	
0	n petals if n is even, 2*n petals if n is odd	

- on petals if n is odd, 2*n petals if n is even
- 2*n petals

1 points

QUESTION 5

The graph of $1-\sin(t)$ is called a cardioid, because it is heart shaped. Find the polar equation of another cardioid, whose graph is shown below.

- \bigcirc 1 $\sin(t)$
- \bigcirc 1 + sin(t)
- \bigcirc 1 $\cos(t)$
- $0 1 + \cos(t)$

1 points

QUESTION 6

The graph is symmetric with respect to the polar axis. What does this say about the algebraic symmetry of the function?

$$r(t) = r(-t)$$

$$r(t) = -r(t)$$

$$\Gamma$$
 $r(t) = r(Pi/2 - t)$

$$r(t) = r(Pi - t)$$

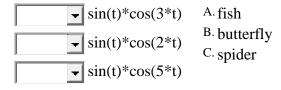
0.5 points

QUESTION 7

A graph is symmetric with respect to the vertical line corresponding to t = Pi/2. What does this say about the algebraic symmetry of the function?

$$r(t) = r(-t)$$

$$r(t) = -r(t)$$


$$r(t) = r(Pi/2 - t)$$

$$r(t) = r(Pi - t)$$

0.5 points

QUESTION 8

Be a little bit artistic here.

1 points

QUESTION 9

Think about what the graph of r(t) = t might look like before you try to graph it. What happens to the graph if you allow negative values of t?

- O It is a circle, with symmetric values for negative t.
- It is a parabola, with symmetric values for negative t.
- The It is a spiral, opening out in the opposite direction for negative t.
- O It is a cross between a fish and a spider, and is not defined for negative t.
- O It is a rose with more and more petals, whether t is positive or negative.

1 points

QUESTION 10

The polar grapher was written using what are called parametric plots, which treat both x and y as depending on t. If you look at the "fine print" at the bottom of the grapher you can see the formulas for how x and y points are being generated. What is the recipe that is used?

- O It is based on the conversion formulas from polar to rectangular coordinates, with r given by the polar function of t that is being plotted.
- The is based on the conversion formulas from rectangular to polar coordinates, with x and y computed by the Pythagorean theorem.
- It comes from the metric system.
- It comes from the reciprocal identities.
- The is based on solving quadratic trig equations to determine x and y.

1 points

QUESTION 11

The "vertical line test" can be used to decide if the graph of a given cartesian equation in rectangular coordinates *x* and *y* represents a function. What is the equivalent of the vertical line in this test when we interpret the test using polar coordinates?

- \bigcirc A vertical line parallel to theta = Pi/2
- \bigcirc A horizontal line parallel to theta = 0
- a line through the origin corresponding to a constant value of theta
- a circle centered at the orgin corresponding to a constant value of r
- a circle passing through the origin

1 points